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Abstract

The grass Deschampsia cespitosa is a variable taxon out of which many varieties, subspecies and endemic species have
been separated. In this paper, the variation in genome size (GS) and ploidy of this grass including several of its subspecies
and two related species in Eurasia was investigated by flow cytometric (FCM) measurements. GS and ploidy data were
also related to specific environments and reproduction mode. Ploidy levels found by FCM were confirmed by chromosome
counts of diploid (2rn=28) and tetraploid (2n=52) samples. Seminiferous (seed bearing) D. cespitosa was mainly diploid
(GS between 3.754 and 5.438 pg/1C). GS variation in diploids showed a geographic pattern with a significant difference
(H=41,441, P<0.001) between European (median=4.377 pg) and Asian (median=4.881 pg) accessions. Genome size
(1C) in tetraploids ranged from 7.9426 to 9.0399 pg. Tetraploid seminiferous D. cespitosa was found mostly in disturbed
habitats in western and southern Europe, while tetraploids in Asia were registered in wet Arctic habitats. Genome size (1C
between 8.3278 and 8.8603 pg) of the pseudoviviparous plants (spikelets produce plantlets asexually) of wet habitats in
central and northern Europe indicated tetraploidy. A putative triploid (GS 6.6817 pg) was detected in Iceland. Summing up,
we found a high variation in GS on the geographic scale with significant regional differences in diploid D. cespitosa. Among
the tetraploids, the asexually reproducing plants were bound to specific habitats, while the seminiferous plants showed a
habitat preference similar to the diploids.
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gerardii Vitman (Keeler and Davis 1999), in the genera Hor-
deum L. (Eilam et al. 2009), as well as in Zea L. and Triti-
cum L. (Kellogg 2015), have played a major role in evolu-
tion. The genus Deschampsia is another group experiencing
polyploidization followed by chromosomal rearrangements
(Amosova et al. 2017), as evidenced also by different ploidy
levels, chromosome numbers (Amosova et al. 2015, 2017)
and a high variation in genome size (1C from 5 to 5.5 pg) for
diploids (Bennett et al. 1982; Murray et al. 2005; Pascual-
Diaz et al. 2020). However, we found only one value for a
tetraploid plant (1C =9 pg) reported by Bennett et al. (1982).
The basic chromosome number of the genus (x = 13) differs
from other members of the core Pooideae (mostly x=7),
suggesting polyploidy incidence predating the diversification
of the genus. In the traditional narrow sense, with exclusion
of taxa formerly ascribed to Deyeuxia Clarion ex P.Beauv
(Saarela et al. 2017) and Scribneria Hack (Soreng et al.
2015), Deschampsia comprises ca. 30 species of mostly per-
ennials and a few South American annual species (Chiapella
and Zuloaga 2010). Hybridization and reticulate evolution
are common in this group of grasses (Wolk and Roser 2017)
and might obscure phylogenetic relationships that are tra-
ditionally based on only a few selected molecular markers.

Deschampsia cespitosa (L.) P.Beauv., the tufted hair
grass, is the most common species of the genus, found in all
continents, with a disjunct distribution among the northern
hemisphere landmasses, southern South America, Australa-
sia and South Africa. Deschampsia cespitosa is a tussock-
forming, wind-pollinated, self-incompatible grass, occurring
in habitats with moderate to high moisture in a cold-temper-
ate climate. This grass has established populations in similar
habitats in regions separated by thousands of kilometers,
where appropriate ecological conditions are present.

Taxonomic challenges

The high morphological variation of Deschampsia cespi-
tosa has led to a confusing taxonomy in the northern hemi-
sphere (e.g., Bocher et al. 1968; Porsild and Cody 1980)
where several Central European populations in particular
ecological settings have been treated as narrow endemic
species (Conert 1987; Lauber and Wagner, 1998), or sub-
species (Chiapella 2000). Intergradation and hybridization
between geographic variants that may be considered sub-
species were assumed by Clarke (1978). Taxa from Rus-
sia and eastern Asia were also treated either as different
species (Probatova 1985; Czerepanov 1995; Tzvelev and
Probatova 2012) or as infraspecific taxa by Chiapella and
Probatova (2003). Several endemic taxa were described by
Tzvelev et al. (2015) and Tzvelev and Probatova (2019). In
contrast, the lumping treatment in the Flora of China (Wu
and Phillips 2006) recognizes only two species (D. koe-
lerioides Regel and D. cespitosa) with four subspecies of

@ Springer

D. cespitosa. The occurrence of pseudovivipary or facul-
tative pseudovivipary has further complicated systematic
approaches. With this form of clonal reproduction, the entire
spikelet is transformed into a small plantlet. Because of the
unclear taxonomy, especially in the northern hemisphere,
some authors (e.g., Kawano 1963; Rothera and Davy 1986)
preferred to use the informal rank of D. cespitosa complex
which includes all morphologically similar varieties, subspe-
cies and regional species.

Karyological variation

Deschampsia cespitosa has been studied in various regional
samples (e.g., Kawano 1963; Albers 1980; Garcia-Suarez
et al. 1997; Murray et al. 2005; Amosova et al. 2017). Eura-
sian accessions of D. cespitosa were found to be mostly dip-
loid with 2n =26 (Kawano 1963; Albers 1975, 1980; Garcia-
Suarez et al. 1997; Dobes and Vitek 2000) with occasional
reports of 2n =28 (Kawano 1963) or 2n=26 + 1B (Marhold
et al. 2007). Aneuploidy was reported for both the diploids
(Kawano 1963) and the polyploids (tetraploids or occasion-
ally also triploids; Kawano 1963; Albers 1980; Hedberg
1958). Deviating numbers such as 2n=41, 49, 50 (Love
and Love 1975; Albers 1980) and 2n=42 (Sokolovskaya
and Probatova 1975) have also occasionally been reported
for the polyploids. In a detailed survey of ploidy levels in
populations of D. cespitosa across Great Britain, both dip-
loids and tetraploids (2rn=26 and 2n =52, respectively) were
reported by Rothera and Davy (1986). This survey revealed
that tetraploids are the predominant cytotype on the island.
The presence of diploids and polyploids has also been docu-
mented in several of the taxa of different ranks related to D.
cespitosa recognized from Russia (Chiapella and Probatova
2003; Tzvelev and Probatova 2019). It has been hypothe-
sized that morphological variation may be correlated with
ploidy levels (Chiapella and Probatova 2003).

Thus, Deschampsia cespitosa provides an interesting sys-
tem to study the role of polyploidy in the context of biogeo-
graphical and habitat features. Using flow cytometry (FCM),
this paper reports the genome size and ploidy-level variation
of multiple populations of D. cespitosa to (i) identify bio-
geographic patterns related to genome size and ploidy lev-
els; (ii) examine to which extent ploidy is related to specific
environments and asexual reproduction.

Materials and methods
Plant material
Plant leaves of 129 populations of Deschampsia cespitosa

and two related species for FCM were collected in the field
and dried under standard herbarium conditions. Tillers were
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also transplanted to the Botanical Garden of the University
of Vienna (HBV) to provide the source of fresh leaf tissue
for genome size measurements and root tips for chromosome
counts. Plantlets of pseudoviviparous origin were also used
for genome size measurement and grown in petri dishes for
collecting root tips. Finally, fresh material was used for only
a few samples from Lake Constance and for a small number
of Austrian samples. The majority of samples for genome
size measurement, however, was taken from the dried vouch-
ers collected during the field trips. In a pilot test, we have
followed the performance of fresh and dried leaf samples
by measuring after several intervals over 5 months (data in
Online Resource 1). The vast majority of our samples was
stored between 3 and 4 months before processing. Vouchers
of the samples are deposited in the herbaria WU and CSH
(for duplicates of Chinese samples).

With the broad concept of Deschampsia cespitosa, we
follow here Chiapella and Probatova (2003) and further rel-
evant sources (Clarke 1980; Chiapella 2000; Wu and Phillips
2006) as none covers the entire investigated area (see Online
Resource 2). We were not able to collect the newly described
endemic taxa by Tzvelev and Probatova (2019). Regarding
Europe, we are aware of several variants given subspecific or
specific rank (Clarke 1980; Conert 1987; Chiapella 2000) or
regarded as evolutionary distinct regional units (Peintinger
et al. 2012) or narrowly distributed neo-endemics (Heydel
et al. 2017). However, for the purpose of this large-scale
study we could not collect all those variants that in part may
reflect ecotypical differentiation. Following Peintinger et al.
(2012), we have separated the D. cespitosa subsp. rhenana
(Gremli) Kerguélen and D. cespitosa subsp. littoralis (Gau-
din) K.Richter.

Additionally, we have included in this investigation two
rare species related to D. cespitosa, namely D. koelerioides
Regel, which was also considered a subspecies of the former
by Tzvelev (1976), and D. argentea Lowe from Macaronesia
which may be an endemic derivative of D. cespitosa. These
samples were not included in the statistical analyses.

Genome size measurements using flow cytometry
(FCM)

Twenty-five milligrams of fresh or dried leaf tissue was co-
chopped (Galbraith et al. 1983) along with fresh standard
leaf material (Solanum pseudocapsicum L., 1C=1.295 pg;
Temsch et al. 2010) in Otto’s buffer I (Otto et al. 1981) using
a sharp razor blade. The resulting nuclear isolate was fil-
tered through a 30-um nylon mesh. Subsequently, double-
stranded RNA was removed by a half an hour treatment with
RNase A (Sigma-Aldrich, USA) at 37 °C. Afterward, Otto’s
buffer II (Otto et al. 1981) that contained 50 mg/L propidium
iodide (PI; AppliChem GmbH, Germany) was added. The
preparations were allowed to incubate before measurement

for at least 1 h in the refrigerator or overnight. The sam-
ples were measured using a flow cytometer CyFlow ML
or CyFlow space (both Sysmex Partec GmbH, Germany),
equipped with a diode-pumped laser (532 nm, 100 mW,
Cobolt AB, Sweden). The 1C values of each sample were
calculated in respect of a linear relationship between the
mean fluorescence intensity (FI) of the G1 nuclei population
of the standard and the samples. 1C value (. =mean FI
sample g1/mean FL . q.04 g1 * 1C-value g, 44rq- From 3,333 up
to 10,000 particles were measured per preparation. Means
and standard deviations for several runs are given in Table 1.
For visualization of different genome sizes, squared decimal
size classes were used with genome sizes <4.1 pg combined
in a single class. The DNA ploidy estimated from the FCM
data was calibrated by chromosome counts in one tetraploid
and two diploid samples.

Chromosome number analyses and Feulgen
densitometry (FDM)

Feulgen densitometry (FDM) was used for chromosome
number analyses in order to verify the ploidy level in two
diploid and one tetraploid individuals (genome size data not
given, Table 1 contains only FCM data of these samples).
Root tips were harvested from healthy plantlets of pseudo-
viviparous plants grown in petri dishes and from samples of
seminiferous (seed bearing) plants grown in HBV. For chro-
mosome number analyses, selected root tip meristems were
pre-treated with 0.002 M 8-hydroxyquinoline in darkness for
2.5 h at room temperature and 2.5 h at 4 °C, fixed in metha-
nol/acetic acid (3:1) overnight and stored at — 20 °C until
use. The fixed root tips were washed six times in distilled
water together with fixed root tips from an internal standard
and hydrolyzed in 5 N HCI in an ultra-thermostatic water
bath (Model LTD6, Grant Instruments Ltd., Cambridge,
Barrington, England) at 20.0 °C for 60 min. The hydrochlo-
ric acid was removed by three washings with distilled water,
followed by the staining step with Schiff’s reagent (Merck,
Darmstadt, Germany) for 1.5 h at room temperature under
light protection. The samples were subsequently washed six
times with SO, water (0.02 M potassium metabisulfite dis-
solved in 0.01 N HCl) over a time period of 45 min. Each
root tip was squashed in 45% acetic acid on a slide under a
cover slip. After removal of the cover slip, the slides were
shortly fixed with ethanol (96%) and finally air-dried.

The preparations were analyzed using the AxioPlan light
microscope (Carl Zeiss, Vienna, Austria) equipped with a
CCD black—white camera. Images of the metaphase plates
were captured using ZEN software (Carl Zeiss, Vienna,
Austria). Genome size was estimated from telophases of the
objects and the standard in order to unambiguously assign
the ploidy level to the genome size estimates on the basis
of single root tips. Therefore, the integrated optical density
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Fig. 1 Map showing the distribution of all Deschampsia samples in Europe and Asia. The map insets depict two regions with dense sampling in
Iceland and Switzerland and the region around Lake Constance (including Germany and Austria). The symbols are explained in the map

Results
Genome size variation and ploidy

The geographical distribution of the entire sample is shown
on the map in Fig. 1. The genome size (1C) ranged from
3.754 to 5.438 pg in diploid and from 7.943 to 8.9732 pg
in tetraploid Deschampsia cespitosa (Fig. 2). We report
here also the genome size of 4.864-5.235 pg found in D.
koelerioides and 4.753 pg for D. argentea. Genome size
data and DNA ploidy of the investigated population sam-
ples as revealed by the FCM measurements are provided in
Table 1. Mitotic metaphase chromosomes for a diploid plant
(2n=26, 1C=4.374 pg) of population 13 and a tetraploid
plant (2n=52, 1C=8.973 pg) of population 20 are shown
in Online Resource 3. The genome size of one individual
of 6.682 pg suggested a putative DNA triploid, sampled
in a mixed population (therefore, different numbers 86—88
in Table 1) of seminiferous and pseudoviviparous plants.
Genome size (1C, pg) clearly varied between diploids,

10,0
8,0 I
=)
=
[S)
~ 6,0
2x 3x 4x
DNA Ploidy

Fig.2 Variation in genome size of Deschampsia cespitosa (1C, pg)
in diploids (n=100), tetraploids (n=24; seminiferous and pseudovi-
viparous) and the putative triploid (n=1)

tetraploids and the putative triploid (Fig. 2). The monoploid
genome sizes (1Cx, pg) showed geographically structured
variation within the diploids, and between some diploids and
all tetraploids, but not within tetraploids (Table 1, Fig. 3).
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55
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o oo
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Fig. 3 Variation in monoploid genome size of Deschampsia cespitosa
(Cx, pg) between diploids (n(Asia)=29; n(Europe)=71) and tetra-
ploids (n(Asia) =3; n(Europe)=21)

Biogeographic patterns and environmental
determinants of genome sizes

Monoploid genome sizes (Cx, pg) of Asian (median=4.881)
and European (median=4.377) diploid populations (Fig. 3)
were significantly different (H=41.441, P <0.001).
Similarly, Asian diploids and all European tetraploids
(median=4.314) were significantly (H=158.007, P<0.001)
different. There was a weak although nonsignificant ten-
dency toward smaller genome sizes (i.e., down-sizing) in the
European tetraploids compared to the diploids of the same
region. The sample of 4x Asia was too small (n=3) for any
meaningful statistics. Variation in monoploid genome size
from Western Europe to eastern Asia along longitude classes
of 10 degree is shown in Online Resource 4.

While the tetraploid pseudoviviparous variants are
clustered in Iceland and around Lake Constance (insets in
Fig. 1), the distribution of the tetraploid seminiferous plants

did not show a distinct geographic pattern. We found them
in southern and Western Europe as well as in Arctic Siberia.
No tetraploid seminiferous plants were found in northern
Europe and in remaining Asia.

The genome size variation of the entire European and
Asian sample of diploid plants was best explained by a model
containing altitude, BIO5 (max temperature of warmest
month) and BIO12 (annual precipitation). The altitude had a
positive effect (R;=0.53, P <0.001), and BIO5 (R;=—0.26,
P <0.001) as well as BIO12 (R;=—0.25, P=0.011) had a
negative effect on genome size (GS increment/decrement)
shown in the partial plots (Fig. 4). The same analysis did
not find any significant effect on genome size within the
European diploids. European plants with small genomes
(1C<4.1 pg) were confined to low and moderate altitudes
(<830 m) mainly in temperate latitudes (49-52° N) of Cen-
tral Europe, while plants with large genomes were found in
the whole range of altitudes being scattered across all the
studied area in Europe (Fig. 5a, b).

Ploidy in relation to ecology and reproduction

Frequencies of diploids and tetraploids considering their
reproduction mode were analyzed in the four habitat types
(Fig. 6). Both diploids and tetraploids showed a prefer-
ence for wet habitats. Diploids were found in all environ-
ment types, whereas tetraploids were not found in forests.
Seminiferous plants were either diploid or tetraploid, while
pseudoviviparous plants were only tetraploid. Separating the
tetraploids by habitat class, reproduction mode and region
indicated the clear preference (91%) of pseudoviviparous
plants for wet habitats, while a high proportion (50%) of the
nonviviparous western tetraploid plants was found in ruderal
habitats (Online Resource 5).

Altitude (m)

Fig.4 Plots showing partial effects of predictors on genome size
of diploid Deschampsia cespitosa revealed by a multivariate lin-
ear regression of a altitude, b BIO5 (max. temperature of warmest
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Discussion plants tended to occur more often in disturbed habitats in

Distribution patterns and ecology of Deschampsia
cespitosa in relation to ploidy levels and genome
size

This study confirmed that seminiferous Deschampsia
cespitosa is predominantly diploid in Eurasia. In addition,
it revealed a pattern of variation in genome size related to
biogeography between diploid European and Asian plants.
Several tetraploid populations were found, but their number
was too low to draw more general conclusions on their dis-
tribution apart from the fact that the tetraploid seminiferous

Southern and Western Europe and in wet habitats in East
Asia, whereas tetraploid pseudoviviparous plants were
restricted to periglacial or high-latitude regions and spe-
cial environments. Diploid D. cespitosa was found in all
environments but exhibited a preference for wet habitats.
Polyploids were reported to be more common than diploids
on the British Isles (Rothera and Davy 1986), and although
there was no evidence that they were better adapted to
cold environments, they were putatively associated with
more disturbed habitats. Given the wide distribution of
Subarctic and Arctic variants of diploid D. cespitosa (this
paper; Kawano 1963; Tzvelev and Probatova 2019) and
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Fig.6 Numbers of diploid and polyploid Deschampsia cespitosa populations separated by reproduction mode (sem = seminiferous; vivip=pseu-

doviviparous) in four habitat classes

the predominance of diploid D. antarctica E.Desv on the
Antarctic Peninsula (Gonzalez et al. 2016; Pascual-Diaz
et al. 2020), it is unlikely that temperature alone affected
the ploidy levels. Polyploids of various plant groups in arc-
tic regions were hypothesized to be more successful than
diploids in post-glacial (re-)colonization (Brochmann et al.
2004). Such polyploids were, however, often found to be of
allopolyploid origin, and their success was hypothesized to
result from effects of fixed heterozygosity. We do not know
whether D. cespitosa tetraploids are of auto- or allopolyploid
origin. Further genetic and molecular phylogenetic analyses
are needed to infer their origin.

The tetraploid and pseudoviviparous variants/subspecies
of our sample were found in lake shore habitats or close to
water courses in cold environments. Peintinger et al. (2012)
considered the subsp. rhenana around Lake Constance a
periglacial relict endemic with special adaptations in its
reproduction (facultative pseudovivipary) to flooding and/or
very harsh conditions in glacial periods. The other tetraploid
and pseudoviviparous subsp. alpina (L.) Tzvelev occurring
in the mountains of northern Europe (Clarke 1980) was
thought to result from several independent polyploidization
events of diploid lineages of D. cespitosa with the potential
of reproducing by pseudovivipary (Hedberg 1958).

The C values found for diploid Deschampsia cespitosa
were mostly lower than the genome sizes reported for the
closely related D. antarctica (1C(pg) between 5.30 and 5.36:
Pascual-Diaz et al. 2020). The trend toward higher genome
size in lower (southern) latitudes observed for the diploid

@ Springer

Asian D. cespitosa samples resulted from the higher genome
size values of the Chinese samples collected mainly in high
altitudes between 3500 and 4000 m. Correlations of genome
size and altitude in other plant groups were found to be group-
specific: They were negative in wild relatives of Zea mays
L. (Poaceae; Laurie and Bennet 1985; Bilinski et al. 2018)
and in Arachis duranensis Krapov & W.C.Greg (Fabaceae;
Temsch and Greilhuber 2001) and positive in Lagenaria
siceraria (Molina) Standl (Cucurbitaceae: Achigan-Dako
2008), and no correlation was inferred for Sesleria albicans
Kit. ex Schult (Poaceae; Lysak et al. 2000). The association
between high genome size, low maximum temperature of
the warmest month and low annual precipitation is plausible
concerning the moderate temperature. Difficult to interpret is
the effect of low precipitation on the genome size; however,
Fig. 4c shows a high variation between < 500 and 1000 mm
that is obviously not well processed by the statistical model.
A general caveat is that the coarse grid climate data may not
well represent the specific conditions at the collection sites.
This concerns especially the Chinese samples (considered
different subspecies) as we found Deschampsia mostly close
to water courses in the high Chinese mountain ranges (Z.X.,
H.S., J.G.: pers. obs.). Other investigations found a negative
correlation in Liliaceae between genome size and precipita-
tion seasonality (Carta and Peruzzi 2016). Jakob et al. (2004)
found disparate genome size patterns in different lineages
of Hordeum marinum L. (Poaceae) in association with cli-
matic variables. They concluded that phylogenetic constraints
might be more important than ecological determinants. The
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presence of cryptic evolutionary lineages connected to dif-
ferent vegetation history across Europe was inferred to be
responsible for the complex patterns of genome size variation
within morphologically similar groups of Picris hieracioides
L. (Asteraceae; Slovak et al. 2009). This can likely be also
the case in D. cespitosa in Europe and on a large continental
scale, especially that many of the regional variants have been
classified as distinct subspecies (e. g., Conert 1987; Chiapella
and Probatova 2003).

No evidence for genome downsizing was found in Europe
by comparing monoploid genome sizes of diploids and tetra-
ploids. In Asia, the tetraploid sample was too small for any
conclusions. The only significant difference in monoploid
genome size was found between the Asian diploids and all
other European samples. It may likely represent two dif-
ferent geographically and thus genetically distinct lineages.
Further genetic analyses will allow for more insight into this
observed pattern.

Ploidy and reproductive mode (seed producing
versus pseudovivipary)

All pseudoviviparous plants investigated in our study had
a genome size indicative of DNA tetraploidy. A reproduc-
tive switch to pseudovivipary in wild populations was often
inferred to be associated with polyploidy and specific envi-
ronmental conditions (Hedberg 1958; Sarapultsev 2001).
Experimentally induced environmental stress (short-time
daylight) was reported to trigger a switch from seminiferous
to pseudoviviparous reproduction in D. cespitosa (Nygren
1949); however, the association with polyploidy was not
tested. There is only a scarce record of diploid and pseu-
doviviparous variants of Deschampsia. An experimentally
induced switch to this reproductive mode was observed in
diploid European accessions transplanted to transects in
California (Lawrence 1945). Another diploid plant col-
lected in the wild with pseudoviviparous reproduction was
reported by Hedberg (1958). A few diploid chromosome
numbers were also reported for samples assigned to the
usually tetraploid and pseudoviviparous northern variant
(subsp. alpina), however, without reference to the repro-
ductive mode (Kawano 1963). One of these records refers
to a diploid chromosome number in a seminiferous acces-
sion under the name D. alpina Roem. ex Schult which was
hypothesized to be a potentially slender variety of D. cespi-
tosa s. str. (Nygren 1949).

Conclusions

Seminiferous Deschampsia cespitosa s.1. is mostly diploid
throughout Eurasia. However, a high variation (CV%=17.24)
in genome size was found among the diploid populations

across the geographic west—east gradient in Eurasia.
Genome size was significantly lower in European acces-
sions than in the Asian ones. Tetraploids of seminiferous
plants were often found on disturbed habitats, albeit without
any geographically or ecologically consistent pattern in their
distribution. Pseudovivipary was found to be specific only
to polyploids and associated with habitats of high moisture.
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